Part Number Hot Search : 
B7721 BC559 BC856S SPX1581 02PA92 PQ20VZ5U 2N6787 TEC3033
Product Description
Full Text Search
 

To Download APT75GN60LDQ3G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7620 rev b 10-2005 apt75gn60ldq3(g) typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 4ma) gate threshold voltage (v ce = v ge , i c = 1ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 75a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 75a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt75gn60ldq3(g) 600 30 155 93 225 225a @ 600v 536 -55 to 175 300 unit volts ampswatts c parametercollector-emitter voltage gate-emitter voltage continuous collector current 8 @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 switching safe operating area @ t j = 175c total power dissipationoperating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef?cient. a built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. low gate charge simpli?es gate drive design and minimizes losses. ? 600v field stop ? trench gate: low v ce(on) ? easy paralleling ? 6s short circuit capability ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 600 5.0 5.8 6.5 1.05 1.45 1.85 1.87 50 tbd 600 4 600v apt75gn60ldq3 APT75GN60LDQ3G* *g denotes rohs compliant, pb free terminal finish. ? c e g to-264 downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) 8 continuous current limited by package lead temperature to 100a. apt reserves the right to change, without notice, the speci?cations and information contained herein . thermal and mechanical characteristics unit c/w gm min typ max .28 .34 5.9 characteristicjunction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa scsoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 75a t j = 175c, r g = 4.3 ? 7 , v ge = 15v, l = 100h,v ce = 600v v cc = 600v, v ge = 15v, t j = 125c, r g = 4.3 ? 7 inductive switching (25c) v cc = 400v v ge = 15v i c = 75a r g = 1.0 ? 7 t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 75a r g = 1.0 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area short circuit safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 4500 370 150 9.5 485 30 270 225 6 47 48 385 38 2500 3725 2140 47 48 430 55 2600 4525 2585 unit pf v nc a s ns j ns j downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250s pulse test<0.5 % duty cycle 160140 120 100 8060 40 20 0 160140 120 100 8060 40 20 0 3.02.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 0 5 10 15 20 25 30 0 2 4 6 8 10 12 0 100 200 300 400 500 8 10 12 14 16 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175 250200 150 100 50 0 1614 12 10 86 4 2 0 3.53.0 2.5 2.0 1.5 1.0 0.5 0 200180 160 140 120 100 8060 40 20 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 13 & 15v 9v 8v 7v 10v t j = 25c. 250s pulse test <0.5 % duty cycle i c = 150a i c = 75a i c = 37.5a v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 150a i c = 75a i c = 37.5a t j = 125c t j = 25c t j = -55c t j = 125c t j = 25c t j = -55c v ge = 15v t j = 175c 11v 12v t j = 175c v ce = 480v v ce = 300v v ce = 120v i c = 75a t j = 25c lead temperature limited lead temperature limited downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 1.0 ? l = 100h switching energy losses (mj) e on2 , turn on energy loss (mj) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (mj) e off , turn off energy loss (mj) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature v ce = 400v v ge = +15v r g = 1.0 ? r g = 1.0 ? , l = 100 h, v ce = 400v v ce = 400v t j = 25c , or =125c r g = 1.0 ? l = 100 h 6050 40 30 20 10 0 200180 160 140 120 100 8060 40 20 0 1614 12 10 86 4 2 0 4035 30 25 20 15 10 50 600500 400 300 200 100 0 9080 70 60 50 40 30 20 10 06 5 4 3 2 1 0 1614 12 10 86 4 2 0 v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 1.0 ? v ce = 400v v ge = +15v t j = 125c 5 25 45 65 85 105 125 145 165 5 25 45 65 85 105 125 145 165 5 25 45 65 85 105 125 145 165 5 25 45 65 85 105 125 145 165 5 25 45 65 85 105 125 145 165 5 25 45 65 85 105 125 145 165 0 10 20 30 40 50 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 400v e on2, 150a e off, 150a e on2, 75a e off, 75a e on2, 37.5a e off, 37.5a e on2, 150a e off, 150a e on2, 75a e off, 75a e on2, 37.5a e off, 37.5a downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) typical performance curves 7,0001,000 500100 250200 150 100 50 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 c oes c res c ies 0.300.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 figure 19b, transient thermal impedance model 0.5 0.1 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.0998 0.181 0.004380.153 power (watts) rc model junction temp. ( c) case temperature. ( c) 10 30 50 70 90 110 130 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 400v r g = 1.0 ? 100 5010 51 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt75dq60 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) typical performance curves characteristic / test conditionsmaximum average forward current (t c = 108c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f ( av ) i f ( rms ) i fsm symbol v f characteristic / test conditions i f = 75a forward voltage i f = 150a i f = 75a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.0 2.4 1.7 apt75gn60ldq3(g) 75 117600 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - 29 - 31 - 55 - 4 - - 140 - 650 - 9 - - 90 - 1300 - 27 unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 75a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f = 75a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 75a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.350.30 0.25 0.20 0.15 0.10 0.05 0 0.5 single pulse 0.1 0.3 0.7 0.05 figure 24b, transient thermal impedance model peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 0.129 0.211 0.01070.120 power (watts) r c model junction temp ( c) case temperature ( c) downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) t j = 125 c v r = 400v 37.5a 75a 150a 180160 140 120 100 8060 40 20 0 3025 20 15 10 50 duty cycle = 0.5 t j = 175 c 140120 100 8060 40 20 0 1.41.2 1.0 0.8 0.6 0.4 0.2 0.0 600500 400 300 200 100 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) t j , junction temperature ( c) case temperature ( c) figure 29. dynamic parameters vs. junction temperature figure 30. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 31. junction capacitance vs. reverse voltage 200180 160 140 120 100 8060 40 20 0 18001600 1400 1200 1000 800600 400 200 0 v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 25. forward current vs. forward voltage figure 26. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 27. reverse recovery charge vs. current rate of change figure 28. reverse recovery cu rrent vs. current rate of change q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 0.5 1 1.5 2 2.5 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = 125 c v r = 400v 150a 37.5a 75a t j = 125 c v r = 400v 150a 75a 37.5a t rr q rr q rr t rr i rrm 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 downloaded from: http:///
050-7620 rev b 10-2005 apt75gn60ldq3(g) typical performance curves 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u .t. +18v 0v t rr / q rr waveform v r apt60gt60br e1 sac: tin, silver, copper to-264(l) package outline dimensions in millimeters and (inches) 19.51 (.768)20.50 (.807) 19.81 (.780)21.39 (.842) 25.48 (1.003)26.49 (1.043) 2.29 (.090)2.69 (.106) 0.76 (.030)1.30 (.051) 3.10 (.122)3.48 (.137) 4.60 (.181)5.21 (.205) 1.80 (.071) 2.01 (.079) 2.59 (.102) 3.00 (.118) 0.48 (.019)0.84 (.033) 2.29 (.090)2.69 (.106) 5.79 (.228)6.20 (.244) 2.79 (.110)3.18 (.125) 5.45 (.215) bsc 2-plcs. collector (cathode) emitter (an ode) gat e collector (cathode) downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT75GN60LDQ3G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X